Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478998

RESUMO

Objective. Very high energy electrons (VHEE) in the range of 50-250 MeV are of interest for treating deep-seated tumours with FLASH radiotherapy (RT). This approach offers favourable dose distributions and the ability to deliver ultra-high dose rates (UHDR) efficiently. To make VHEE-based FLASH treatment clinically viable, a novel beam monitoring technology is explored as an alternative to transmission ionisation monitor chambers, which have non-linear responses at UHDR. This study introduces the fibre optic flash monitor (FOFM), which consists of an array of silica optical fibre-based Cherenkov sensors with a photodetector for signal readout.Approach. Experiments were conducted at the CLEAR facility at CERN using 200 MeV and 160 MeV electrons to assess the FOFM's response linearity to UHDR (characterised with radiochromic films) required for FLASH radiotherapy. Beam profile measurements made on the FOFM were compared to those using radiochromic film and scintillating yttrium aluminium garnet (YAG) screens.Main results. A range of photodetectors were evaluated, with a complementary-metal-oxide-semiconductor (CMOS) camera being the most suitable choice for this monitor. The FOFM demonstrated excellent response linearity from 0.9 Gy/pulse to 57.4 Gy/pulse (R2= 0.999). Furthermore, it did not exhibit any significant dependence on the energy between 160 MeV and 200 MeV nor the instantaneous dose rate. Gaussian fits applied to vertical beam profile measurements indicated that the FOFM could accurately provide pulse-by-pulse beam size measurements, agreeing within the error range of radiochromic film and YAG screen measurements, respectively.Significance. The FOFM proves to be a promising solution for real-time beam profile and dose monitoring for UHDR VHEE beams, with a linear response in the UHDR regime. Additionally it can perform pulse-by-pulse beam size measurements, a feature currently lacking in transmission ionisation monitor chambers, which may become crucial for implementing FLASH radiotherapy and its associated quality assurance requirements.


Assuntos
Elétrons , Radioterapia de Alta Energia , Dosagem Radioterapêutica , Tecnologia de Fibra Óptica , Radiometria/métodos
2.
Phys Med Biol ; 69(5)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295408

RESUMO

Objective.Spatially-fractionated radiotherapy (SFRT) delivered with a very-high-energy electron (VHEE) beam and a mini-GRID collimator was investigated to achieve synergistic normal tissue-sparing through spatial fractionation and the FLASH effect.Approach.A tungsten mini-GRID collimator for delivering VHEE SFRT was optimized using Monte Carlo (MC) simulations. Peak-to-valley dose ratios (PVDRs), depths of convergence (DoCs, PVDR ≤ 1.1), and peak and valley doses in a water phantom from a simulated 150 MeV VHEE source were evaluated. Collimator thickness, hole width, and septal width were varied to determine an optimal value for each parameter that maximized PVDR and DoC. The optimized collimator (20 mm thick rectangular prism with a 15 mm × 15 mm face with a 7 × 7 array of 0.5 mm holes separated by 1.1 mm septa) was 3D-printed and used for VHEE irradiations with the CERN linear electron accelerator for research beam. Open beam and mini-GRID irradiations were performed at 140, 175, and 200 MeV and dose was recorded with radiochromic films in a water tank. PVDR, central-axis (CAX) and valley dose rates and DoCs were evaluated.Main results.Films demonstrated peak and valley dose rates on the order of 100 s of MGy/s, which could promote FLASH-sparing effects. Across the three energies, PVDRs of 2-4 at 13 mm depth and DoCs between 39 and 47 mm were achieved. Open beam and mini-GRID MC simulations were run to replicate the film results at 200 MeV. For the mini-GRID irradiations, the film CAX dose was on average 15% higher, the film valley dose was 28% higher, and the film PVDR was 15% lower than calculated by MC.Significance.Ultimately, the PVDRs and DoCs were determined to be too low for a significant potential for SFRT tissue-sparing effects to be present, particularly at depth. Further beam delivery optimization and investigations of new means of spatial fractionation are warranted.


Assuntos
Elétrons , Dosimetria Fotográfica , Método de Monte Carlo , Dosimetria Fotográfica/métodos , Síncrotrons , Carmustina , Água , Dosagem Radioterapêutica , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...